782 research outputs found

    Comparing Kalman Filters and Observers for Power System Dynamic State Estimation with Model Uncertainty and Malicious Cyber Attacks

    Full text link
    Kalman filters and observers are two main classes of dynamic state estimation (DSE) routines. Power system DSE has been implemented by various Kalman filters, such as the extended Kalman filter (EKF) and the unscented Kalman filter (UKF). In this paper, we discuss two challenges for an effective power system DSE: (a) model uncertainty and (b) potential cyber attacks. To address this, the cubature Kalman filter (CKF) and a nonlinear observer are introduced and implemented. Various Kalman filters and the observer are then tested on the 16-machine, 68-bus system given realistic scenarios under model uncertainty and different types of cyber attacks against synchrophasor measurements. It is shown that CKF and the observer are more robust to model uncertainty and cyber attacks than their counterparts. Based on the tests, a thorough qualitative comparison is also performed for Kalman filter routines and observers.Comment: arXiv admin note: text overlap with arXiv:1508.0725

    Sorta Solving the OPF by Not Solving the OPF: DAE Control Theory and the Price of Realtime Regulation

    Full text link
    This paper presents a new approach to solve or approximate the AC optimal power flow (ACOPF). By eliminating the need to solve the ACOPF every few minutes, the paper showcases how a realtime feedback controller can be utilized in lieu of ACOPF and its variants. By \textit{(i)} forming the grid dynamics as a system of differential algebraic equations (DAE) that naturally encode the non-convex OPF power flow constraints, \textit{(ii)} utilizing advanced DAE-Lyapunov theory, and \textit{(iii)} designing a feedback controller that captures realtime uncertainty while being uncertainty-unaware, the presented approach demonstrates promises of obtaining solutions that are close to the OPF ones without needing to solve the OPF. The proposed controller responds in realtime to deviations in renewables generation and loads, guaranteeing transient stability, while always yielding feasible solutions of the ACOPF with no constraint violations. As the studied approach herein indeed yields slightly more expensive realtime generator controls, the corresponding price of realtime control and regulation is examined. Cost-comparisons with the traditional ACOPF are also showcased -- all via case studies on standard power networks

    Buildings-to-Grid Integration Framework

    Full text link
    This paper puts forth a mathematical framework for Buildings-to-Grid (BtG) integration in smart cities. The framework explicitly couples power grid and building's control actions and operational decisions, and can be utilized by buildings and power grids operators to simultaneously optimize their performance. Simplified dynamics of building clusters and building-integrated power networks with algebraic equations are presented---both operating at different time-scales. A model predictive control (MPC)-based algorithm that formulates the BtG integration and accounts for the time-scale discrepancy is developed. The formulation captures dynamic and algebraic power flow constraints of power networks and is shown to be numerically advantageous. The paper analytically establishes that the BtG integration yields a reduced total system cost in comparison with decoupled designs where grid and building operators determine their controls separately. The developed framework is tested on standard power networks that include thousands of buildings modeled using industrial data. Case studies demonstrate building energy savings and significant frequency regulation, while these findings carry over in network simulations with nonlinear power flows and mismatch in building model parameters. Finally, simulations indicate that the performance does not significantly worsen when there is uncertainty in the forecasted weather and base load conditions.Comment: In Press, IEEE Transactions on Smart Gri
    • …
    corecore